
Event-based Requests
Classic support
Thu, Jan 13, 2005

Classic protocol provides support for clock-event-based requests as well as for one-shot and 
periodic requests. It also provides special support for page applications that may have to 
await the arrival of replies from contributing external nodes to a given request. This special 
support comes by way of the routine Collect, which tries to wait for nodes that have not 
replied recently enough consistent with the request period. This works fine for periodic 
requests, but it is not currently working for event-based requests. This note explores how this 
waiting support in Collect works for periodic requests and develops how to provide the 
same support for event-based requests.

Cast of variables
Several key fields must be described that help provide the required waiting support. 

For the Type #1 requests that are created by a page application call to ReqData, for the case 
that at least one external contributing node is involved, a special structure is built for each 
external contributing node that is referenced in the request. Each structure is as follows:

Field Size Meaning
X_NODE 2 External node#
X_TALLY 2 Tally of idents
X_STAT 2 External answer fragment status
X_ABUF 2 Offset to external answer buffer
X_SPAR 2 (spare)
X_SIZE 2 #bytes in external answer buffer
X_AGE 2 Time in cycles since last update
X_CNTR 2 Countdown until request reissue

The X_AGE field is used with special care to support the waiting logic. It is set to –1 when the 
request is initialized, which means that a reissue is pending if no reply from the external 
node is received soon, say, within about 2 cycles. (A prompt reply is expected for a periodic 
request.) It is set to a copy of the request period (in cycles) when a reply is received from the 
external node. When the Update task runs early in each cycle, and if X_AGE is ≥ 0, it is 
decremented by 1. If Collect is called when X_AGE is zero, it tries to wait for a reply from the 
external node. Follow this logic for a request period of 1 cycle, meaning 15 Hz replies, and it 
is obvious that this logic is suitable for supporting the appropriate waiting. All this depends 
upon the nodes involved operating synchronously, with each node’s cycle activity beginning 
at the same time. 

ms in cycle X_AGE Action
0 1 Start of 15 Hz cycle (left over from previous cycle)
1 0 Update task decrements X_AGE
4 0 Page application calls Collect

15 1 Arrival of reply from external node
16 1 Return from Collect with latest reply data

If Collect times out, meaning it is still waiting for a reply from an external node at 50 ms 
into the current cycle, the X_AGE field is set to –1, with the X_CNTR field set to ±30 depending 
on whether a reply has ever been received since the request was initialized. This gives a 2 
second delay before a reissue of the request is sent. This covers the case of a node that was 
down when the request is initialized (returned status = 8) as well as the case of a node that 
died since the request was initialized (returned status = 7). If a reply is received during the 2 
seconds, the pending reissue is canceled. This 2 second time out is handled by the Update 



task logic, such that if the value of X_CNTR is reduced to zero while the value of X_AGE is –1, 
implying 2 seconds has elapsed since Collect found an apparently missing reply, then the 
original request is reissued to that node in hopes that it will come alive soon and start 
contributing to the request. A node that is down therefore receives reminders every 2 seconds 
as long as the request is active.

Summarize the logic components that exist today:
Task Routine Action for periodic/one-shot Action for clock event case
Appl ReqDat X_AGE = –1 X_AGE = –1
Update ExtCheck decrement X_AGE iff ≥ 0 (ExtCheck not called)
Classic EXTAN X_AGE = period (=1 if one-shot) X_AGE = event!!
Appl Collect If X_AGE = 0, wait. If X_AGE = 0, wait.

If time-out, X_AGE = –1. If time-out, X_AGE = –1.

The present logic is not fully prepared for supporting clock event-based requests properly, 
which is the reason for this note.

How might similar logic proceed for the clock event case? If the Update task, recognizing that 
the event upon which a request awaits is true this cycle, sets X_AGE to 0, then Collect can 
enter its waiting logic. If the arrival of a new reply sets X_AGE to 1, then Collect will stop 
waiting and return the fresh data. If Update, for a cycle in which the event is false, does 
nothing, then it will, without waiting, build and return the same data to the caller of 
Collect. This may even be desirable. Normally, an application may want to check for the 
occurrence of the event of interest (via HaveEvt) prior to calling Collect.

Suggestion for improved logic components:
Task Routine Action for periodic/one-shot Action for clock event case
Appl ReqDat X_AGE = 0 X_AGE = 2
Update ExtCheck decrement X_AGE iff > 0 X_AGE = 0 iff event true
Classic EXTAN X_AGE = period (=1 if one-shot) X_AGE = 1
Appl Collect If X_AGE = 0, wait. If X_AGE = 0, wait.

If time-out, X_AGE = –1. If time-out, X_AGE = –1.

The change in initialization of X_AGE means for the periodic/one-shot case that an immediate 
call to Collect will result in waiting for the reply. This can allow a call to Collect to 
immediately follow a call to ReqData with the result of awaiting the prompt reply. This can 
work because Collect calls NextTask while it is waiting in order to allow other tasks to run. 
But it depends upon the call to ReqData being able to initiate sending the request message to 
the network, which it does not now do. At present, the Appl task, after the page application 
has returned and just before it ends its 15 Hz execution, sends a signal to the Update task that 
results in flushing the network queue and thereby transmitting the request to the external 
nodes. A change should be made in ReqDat to send this signal to Update before it returns.

For the clock event case, setting X_AGE = 2 at initialization ensures that Collect is not set to 
wait if it should be called right away. This is appropriate because an event-based request 
does not result in a prompt reply. If an application called Collect right after ReqData, it 
would receive an 8 error status right away, because ReqData initializes the status word to 8. 
The data that would be returned is updated for the local node but all zero for external nodes. 
As mentioned above, it is a good idea for an application not to call Collect for an event-
based request unless it knows that the event is true for the current cycle. (Setting X_AGE = 1 at 
initialization would give the same result as setting it = 2, but using a different positive value 
for the event case may have some diagnostic interest.)

Event-based Requests p. 2



In the Update task, for the clock event case, the X_AGE field is set to 0 only if the event is true. 
This enables the waiting logic in a call to Collect, allowing the replies from external nodes 
to be received before returning the reply data to the application. As long as the event is false, 
the Update task will not change it, so it likely remains the positive value it was set to when a 
reply was last received. If the waiting logic in Collect is entered because X_AGE = 0, and it 
times out, it sets X_AGE = –1, which will result in a reissue of the request in 2 seconds, 
provided no reply is received within that time. If the clock event never becomes true, X_AGE 
will never be set = 0, no waiting will occur, and no reissues will occur.

Again, for the clock event case, if a reply is received, EXTAN sets X_AGE = 1. (This fixes a bug.) 
This ensures that Collect will not wait. Such a reply should arrive on the cycle in which a 
clock event is true, when Update will have set X_AGE = 0, so this is ok. Any waiting logic will 
thereby cease waiting.

Detailed changes
Initialization in ReqDat module:
If clock event case, initialize X_AGE to 2; otherwise, set it to 0.
Send signal to Update task to cause network queue to be flushed.

Routine UDPCHAIN in Update task:
Change to call EXTCHECK in any case, rather than avoiding it for the clock event case.

Routine EXTCHECK in Update task:
Before loop, for clock event case, set D4.B nonzero if clock event true, else 0x00. If not 
clock event case, set D4.B = period.
Inside loop, if Ext Req Block, issue resend only if clock event case or D4.B nonzero. 
(One-shot requests do not result in reissues.)
Inside loop when X_AGE is not –1, if clock event case and event true, set X_AGE = 0. But 
if not clock event case, decrement X_AGE if > 0 unless one-shot case.

Routine EXTAN in Classic task:
If clock event case, set X_AGE to 1; else, set X_AGE to request period, or to 1 if one-shot.

Server node
The logic described here for support of data requests by page applications is largely 

used to support Server requests, in which a client node sends a request with a special flag bit 
set that asks for server node support. The node forwards the request on behalf of the client, 
accepting all the replies from the external nodes and collecting them (via CollectS) to be 
delivered in one reply to the client node. The CollectS routine does not wait because it is 
meant to be called by the Server task that normally runs 40 ms into the cycle, considered a 
deadline by which replies from all contributing nodes should have been received.

Summary
We have explored the logic related to monitoring the replies from contributing nodes 

in response to a Classic protocol data request. Improvements are designed to allow a page 
application to invoke Collect immediately following a ReqData call to await the prompt 
reply to a one-shot or periodic request. Changes are made for handling clock event-based 
requests more sensibly, including support for reissuing requests to external nodes that fail to 
reply to such a request.

Event-based Requests p. 3


